
Using Dynamic Adjustment of Serialization Order for Real-Time Database Systems

Juhnyoung Lee and Sang H. Son

Department of Computer Science
University of Virginia

Charlottesville, VA 22903

Abstract
Studies in [7, 8, 91 concluded that for a variety of reasons,
optimistic concurrency control appears well-suited to real-time
database systems. Especially, they showed that in a real-time
database system that discards tardy transactions, optimistic
concurrency control outperforms locking. In this paper, we show
that the optimistic algorithms used in those studies incur restarts
unnecessary to ensure data consistency. We present a new
optimistic concurrency control algorithm that can avoid such
unnecessary restarts by adjusting serialization order
dynamically, and demonstrate that the new algorithm
outperforms the previous ones over a wide range of system
workload. It appears that this algorithm is a promising candidate
for basic concurrency control mechanism for real-time database
systems.

1. Introduction
Real-Time Database Systems (RTDBSs) differ from

conventional database systems in a number of ways. In RTDBSs,
transactions have timing constraints, the primary performance
criterion is timeliness level and not average response time or
throughput, and scheduling of transactions is driven by priority
considerations rather than fairness considerations. Given these
significant differences, considerable research has been recently
devoted to designing concurrency control algorithms for RTDBSs
and to evaluating their performance [1, 2, 7, 8,9, 10, 1 1, 13, 14,
161. Most of these algorithms are based on one of the two basic
concurrency control mechanisms: locking [5] and optimistic
concurrency control [12], and use priority information in the
resolution of data conflicts, that is, resolve data conflicts in favor
of the higher priority transaction.

The problem of scheduling transactions in an RTDBS
with the objective of minimizing the percentage of transactions
missing its deadline was first addressed in [l, 21. Their work
focused on evaluating the performance of various scheduling
policies in RTDBSs through simulation experiments. A group of
concurrency control algorithms for RTDBSs using two-phase
locking as the underlying concurrency control mechanism was
proposed and evaluated.

The study in [7,8] focused primarily on the behavior of
concurrency control protocols in a real-time database
environment. The study showed that under the condition that tardy

This work was supported in part by ONR, by DOE, and by IBM.

transactions are discarded from the system, optimistic
concurrency control outperforms locking over a wide range of
system loading and resource availability. The key reason for this
result was described that the optimistic method, due to its
validation stage conflict resolution, ensures that eventually
discarded transactions do not restart other transactions unlike the
locking approach in which soon-to-be-discarded transactions may
restart other transactions. Such restarts are referred to as wasted
restarts [7].

In [8], the problem of adding transaction timing
information to optimistic concurrency control was addressed.
They showed that the problem is nontrivial partly because giving
preferential treatment to high priority transactions may result in an
increase in the number of missed deadlines. In particular, the
delayed conflict resolution policy of optimistic algorithms
significantly reduces the possibility that a validating transaction
sacrificed for an active transaction with a higher priority will meet
its deadline. In addition, this situation may aggravate the real-time
performance of the system in two more ways. One is that the
validating transaction is restarted after spending most of the time
and resources for its execution. The other is that there is no
guarantee that the active transaction which caused the restart of
the validating transaction will meet its deadline. If the active
transaction does not meet its deadline for any reason, the sacrifice
of the validating transaction is wasted. In [8], they studied several
altemative schemes of incorporating transaction priority
information into optimistic algorithms, including a scheme based
on priority wait mechanism with wait control technique.
However, this study and others [1 1,141 showed that none of those
schemes constantly outperforms the priority-incognizant
algorithm.

The results of these studies suggest several implications.
First, the choice of basic (priority-incognizant) concurrency
control mechanism has significant impact on the performance of
concurrency control for RTDBSs. The work in [7] showed that
although the optimistic algorithm does not take transaction
deadlines into account in making data conflict resolution
decisions, it can still outperform a deadline-cognizant locking
algorithm in a real-time database environment. Second, the
number of restarts incurred by concurrency control is the major
factor deciding the performance of concurrency control in real-
time database systems, that is, having more restarts leads to poorer
performance. Therefore restarts should be avoided if possible. In
fact, the same result was derived in the studies of conventional
database system performance [3]. Finally, more study should
address the problem of designing deadline-sensitive optimistic

66
1052-8725/93 $03.00 0 1993 IEEE

~~

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1993 2. REPORT TYPE

3. DATES COVERED
 00-00-1993 to 00-00-1993

4. TITLE AND SUBTITLE
Using Dynamic Adjustment of Serialization Order for Real-Time
Database Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Charlottesville,VA,22904-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

concurrency control algorithms. A practical real-time
concurrency control algorithm should provide significant
performance gains over the deadline-insensitive algorithms under
a wide range of system workload and operating conditions.

In this paper, we address the problem of optimistic
concurrency control algorithms that incur restarts unnecessary to
ensure serializability among concurrent data access operations.
We present a new optimistic concurrency control algorithm that
can avoid such “unnecessary restarts,” by dynamically adjusting
serialization order of transactions through the use of timestamp
intervals associated with running transactions. It appears that this
protocol is a promising candidate for basic concurrency control
mechanism for RTDBSs. The design of deadline-sensitive
concurrency control schemes based on this algorithm for RTDBSs
was discussed in a different paper [14].

The remainder of this paper is organized in the following
fashion: Section 2 reviews the principle of optimistic concurrency
control, and shows deficiencies of the optimistic methods used in
previous studies. A new optimistic algorithm is presented in
Section 3. Section 4 describes our real-time database environment
for experiments. In Section 5 , the results of the simulation
experiments are highlighted. Finally, Section 6 summarizes the
main conclusions of the study and outlines future study.

2. Optimistic Concurrency Control
In this section, we first discuss the principles underlying

optimistic concurrency control, particularly regarding its
validation. Then we show an example of unnecessary restarts
incurred by the optimistic algorithms used in the previous studies.

2.1. Principles
In optimistic concurrency control, transactions are

allowed to execute unhindered until they reach their commit point,
at which time they are validated. Thus, the execution of a
transaction consists of three phases: read, validation, and write
[12]. The key component among these is the validation phase
where a transaction’s destiny is decided. Validation comes in
several flavors, but every validation scheme is based on the
following principle to ensure serializability .

If a transaction Ti is serialized before transaction Tj , the
following two conditions must be satisfied:

Condition 1: No overwriting
The writes of Ti should not overwrite the writes of T j .
Condition 2: No read dependency
The writes of Ti should not affect the read phase of T j .

Generally, Condition 1 is automatically ensured in most
optimistic algorithms because I/O operations in the write phase
are required to be done sequentially in critical section. Thus most
validation processes consider only Condition 2, and it can be
carried out basically in either of the following two ways [6].

2.1.1. Backward Validation

In this scheme, the validation process is carried out

against (recently) committed transactions. Data conflicts are
detected by comparing the read set of the validating transaction
and the write set of committed transactions, since it is obvious that
committed transactions precede the validating transaction in
serialization order. Such data conflicts should be resolved to
ensure Condition 2. The only way to do this is to restart the
validating transaction. The classical optimistic algorithm in [121 is
based on this validation process.

Let T,, be the validating transaction and T, (c = I, 2, ..., n,
c # v) be the transactions recently committed with respect to T,,,
i.e., those transactions that commit between the time when T,,
starts executing and the time at which T,, enters the validation
phase. Let RS(T) and WS(T) denote the read set and write set of
transaction T, respectively. Then the backward validation
operation can be described by the following procedure.

validate(T,,);
(

valid := true;
foreach T, (c = I, 2, ..., n) (

if WS(T,) n RS(T,,) + () then valid := false;
if not valid then exit loop;

1
if valid then commit WS(T,,) to database
else restart(T,,);

1

2.1.2. Forward Validation

In this scheme, validation of a transaction is done against
currently running transactions. This process is based on the
assumption that the validating transaction is ahead of every
concurrently running transaction still in read phase in serialization
order. Thus the detection of data conflicts is carried out by
comparing the write set of the validating transaction and the read
set of active transactions. That is, if an active transaction has read
an object that has been concurrently written by the validating
transaction, the values of the object used by the transactions are
not consistent. Such data conflicts can be resolved by restarting
either the validating transaction or the conflicting transactions in
the read phase. Optimistic algorithms based on this validation
process are studied in [6].

Let T, (a = I , 2 ,..., n, a # v) be the conflicting
transactions in their read phase. Then the forward validation can
be described by the following procedure.

validate(T,,);

valid := true;
foreach T, (a = 1, 2, ... , n) (

(

if RS(T,) n WS(T,,) # (] then valid := false;
1
if valid then commit WS(T,,) to database
else conflict resolution(T,,);

I

In real-time database systems, data conflicts should be
resolved in favor of higher priority transactions. In backward
validation, there is no way to take transaction priority into account

67

in the serialization process. since it is carried out against already
committed transactions. Thus backward validation is not
amenable to real-time database systems. Forward validation
provides flexibility for conflict resolution that either the validating
transaction or the conflicting active transactions may be chosen to
restart, so it is preferable for real-time database systems. In
addition to this flexibility, forward validation has the advantage of
early detection and resolution of data conflicts.

All the optimistic algorithms used in the previous studies
of real-time concurrency control in [7,8,9,11,13,14] are based
on the forward validation. The broadcast mechanism in the
algorithm, OFT-BC used in [7,8,9], is an implementation variant
of the forward validation. From now on, we refer to this algorithm
as OCC-FV.

2.2. Unnecessary Restarts
As we mentioned above, forward validation is based on

the assumption that the serialization order among transactions is
determined by the arriving order of transactions at validation
phase. Thus the validating transaction, if not restarted, always
precedes concurrently running active transactions in serialization
order. We claim that this assumption is not only unnecessary, but
also the validation process based on this assumption can incur
restarts not necessary to ensure data consistency. These restarts
should be avoided. To ensure this claim, let us consider the
following example.

Example 1: Let rJx] and wi[x] denote a read and write operation,
respectively. on the data objat x by transaction i, and let vi and ci
denote the validation and commit of transaction i. respectively.
Consider three transactions TI, T2, and T3:

TI: r1txI W l t X I r l b l W l t Y I V I
Tp. r2[x] wztx] ... v2
TJ: r3[y] ... v3

and suppose they execute as follows:

If we use the forward validation process described above for the
validation of TI, both the active transactions, T2 and T3 are
conflicting with TI on data items x and y, respectively, and should
restart. It is fair for T2 to restart since it has both write-write and
write-read conflicts with TI. However, T3, we observe, does not
have to restart, if there is no more conflict with TI than the write-
read conflict on data item y. In fact no serialization order between
TI and T3 has been built except for the read-write conflict on y. If
we set the serialization order between TI and T3 as T3 + TI during
the validation of TI, we can ensure data consistency without
restarting T3.B

We refer to such a restart of T3 in the forward validation
as an unnecessary restart. Also, we refer to transactions having
both write-write and write-read conflicts with the validating
transaction like T2 as irreconcilably conflicting, while
transactions having only write-read conflicts l i e T3 as
reconcilably conflicting.

The design of the new optimistic algorithm presented in

the next section is based on this categorization of active
transactions. As we will explain, the categorization is
automatically done by adjusting and recording the current
serialization order dynamically using timestamp intervals
associated with each active transaction. The performance gain by
the new algorithm can be significant especially when reconcilable
conflicts dominate, that is. the probability that a data object read
is updated is low, which is true for most actual database systems.
Generally, under a wide range of system workload, the algorithm
provides a performance advantage by reducing the number of
restarts at the expense of maintaining serialization order
dynamically.

3. A New Optimistic Algorithm
In this section, we present the proposed optimistic

algorithm in detail. We first explain the mechanism to guarantee
serializability used in the algorithm, and then prove its
correctness. At the end, we discuss the advantages and
disadvantages of this protocol. We hereafter refer to this algorithm
as OCC-TI.

3.1. Validation Phase
In this protocol, every transaction in the read phase is

assigned an timestamp interval, which is used to record temporary
serialization order induced during the execution of the transaction.
At the start of execution, the timestamp interval of a transaction is
initialized as [Op), i.e., the entire range of timestamp space.
Whenever serialization order of a transaction is induced by its data
operation or the validation of other transactions, its timestamp
interval is adjusted to represent the dependencies. In addition to
the timestamp interval, a final timestamp is assigned to each
transaction which has successfully passed its validation test and

In this algorithm, a transaction that finishes read phase
and reaches validation is always guaranteed to commit as in OCC-
FV. However, unlike OCC-FV in which a transaction is validated
by comparing its write set and the read sets of transactions, the
validation of a transaction in OCC-TI consists of adjusting the
timestamp intervals of concurrent transactions.

Let TI(T) and TS(T) denote the timestamp interval and
final timestamp of transaction T, respectively. Then the validation
process can be briefly described by the following procedure.

guaranteed to commit.

validate(T,);

select TS(Tv) from TI(Tv);
foreach T, (a = 1,2, ... ,1) (

1
foreach Di (i = 1.2, ... , m) in RS(Tv) (

1
foreach Dj (j= 1.2, ... , n) in WS(T,) (

1
commit WS(T,) to database;

I

adjust(T,);

update RTS(Dj);

update m (D j) ;

1

First, the final timestamp, TS(T,), is determined from the
timestamp interval, TI(T,). In fact, any timestamp in TI(T,) can be
chosen to be TS(T,), because any value in TI(T,) preserves the
serialization order induced by T,. In this algorithm, we always
select the minimum value of TI(T,) for TS(T,) for a practical
reason, which will be made clear later. TS(T,) is used in the next
steps of the validation process. Second, the timestamp intervals of
all the concurrently running transactions that have accessed
common objects with T, are adjusted to reflect the serialization
order induced between T, and those transactions. Any active
transaction whose timestamp interval shuts out by the adjustment
operation should restart, because it has introduced nonserializable
execution with respect to T,. The details of the adjustment
procedure will be described below. Finally, if necessary, the final
timestamp of the committing transaction is recorded for every
data object it has accessed. RTS(D) and WTS(D) denote the largest
timestamp of committed transactions that have read and written,
respectively, data object D. The need of this operation will be
explained in the next section.

The salient point of OCC-TI is that unlike other
optimistic algorithms, it does not depend on the assumption of the
serialization order of transactions being the same as the validation
phase arriving order, but it records serialization order induced
precisely and uses restarts only when necessary. Let us examine
how serialization order is adjusted between the validating
transaction and a concurrently active transaction for the three
possible types of conflict:

Read-write conflict (RS(T,) n WS(T,) # { })

This type of conflicts leads the serialization order between T, and
T, to T, + Tu. That is, the timestamp interval of T, is adjusted to
follow that of T,. We refer to this ordering as forward ordering.
The implication of this ordering is that the read phase of T, is not
affected by the writes of T,.

Write-read conflict (WS(T,) n RS(T,) # {))

In this case, the serialization order is recorded as T, + T,. That is,
the timestamp interval of Ta is adjusted to precede that of T,. This
ordering is referred to as backward ordering. It implies that the
writes of T, have not affected the read phase of T,.

Write-write conflict (WS(T,) n WS(T,) # ())

A write-write conflict results in forward ordering, i.e., T, + Tu.
Thus the order implies that T,’s writes do not overwrite Ta’s
writes.

Non-serializable execution is detected when the
timestamp interval of an active transaction shuts out. The non-
serializable execution is deleted from execution history by
restarting the transaction. Obviously, the timestamp interval of an
active transaction that requires both backward and forward
ordering to record the execution of its operations will shut out.
Such transaction are irreconcilably conflicting with the validating
transaction.

The adjustment of timestamp intervals of active
transactions is the process of recording serialization order

according to the conflict types and their corresponding ordering.
It can be described by the following procedure. We assume that
timestamp intervals contain only integers.

adjust(T,);
1

foreach Di (i = 1, 2, ... , m) in RS(T,) {
if Di in WS(T,)
then TI(T,) := TI(T,) n [TS(T,), -);
if TI(T,) = [] then restart(T,);

1

foreach D . (j= 1,2, ..., n) in WS(T,) (
if Dj i’, RS(T,)
then TI(T,) := TI(T,) n [O, TS(T,)-11;
if Dj in WS(T,)
then TI(T,) := TI(T,) n [TS(T,), -);
if TI(Tu) = [] then restart(T,);

1
1

3.2. Read Phase
The adjustment of active transactions’ timestamp

intervals at the validation of a transaction is the process of
recording the serialization order between the committing
transaction and the data operations performed by the concurrently
running transactions until the moment. Because the active
transactions continue to execute remaining data operations, the
execution order induced by the remaining operations should be
checked to determine if they induce any non-serializable
execution. If so, the active transaction should restart. The
following example demonstrates such late restart.

Example 2: Consider two transactions TI and T2:

TI: r1lvl W l [Y I ‘1
T2: r2lvl W2[YI ... v2

and suppose they execute as follows:

At the validation of TI, T2 has only a write-read conflict with TI.
With the backward ordering, the serialization order between TI
and T2 is set as T2 + TI, and T2 is not restarted. However, later
the write operation of T2, w2[y], induces a serialization order
between T, and T2 in opposite direction. Thus T2 has to restart..

The detection of non-serializable execution by remaining
operations of active transactions can also be done using the
timestamp intervals. Because, in this case, the serialization order
of active transactions is checked against committed transactions,
we need to use the timestamps of data objects, i.e., RTS(D) and
WTS(D) of data object D. In the read phase, whenever a
transaction performs a data operation, its timestamp interval is
adjusted to reflect the serialization induced between the
transaction and committed transactions. If the timestamp interval
shuts out, a non-serializable execution performed by the
transaction is detected, and the transaction restarts. The process
can be described by the following procedure.

69

read-phase(T,);
1

foreach Di (i = 1,2, m) in RS(T,) (

TI(T,) := TI(T,) n [WTS(Di), m);
if TI(T2 = [I then restart(T,);

foreach D. (j - 1,2, ..., n) in WS(T,) (
pre-write(b.1;-

read(Di);

1

TI(TJ := T~T,) n [wTs(D.), -) n [RTS(D~), =);
if TI(TJ = 1 then restart(+,);
I

I
Example 3: To understand how this procedure works, let us
consider the previous example again. The execution history is
given as follows:

H2 = .IlYI rz[Yl W l l Y I V I C I Wz[Yl.

At its validation, TI is first assigned a final timestamp TS(TI), say
74. Then with backward ordering, the timestamp interval of T2 is
adjusted to be [0,73]. In addition, the timestamps of data object,
RTS(y) and wTs(y), accessed by TI are updated to be 74. After the
validation process, when T2 performs wz[y], its timestamp is
adjusted by the following operation:

TI(T2) := [0,73] n [74, m) n [74, -).

Because this operation leaves TI(T2) shut out, non-serializable
execution is detected and T2 restarts..

Note that in OCC-FV, transactions in read or validation
phase do not need to check for conflicts with already committed
transactions. In this algorithm, transactions conflicting with a
committed transaction would have been restarted earlier by the
committed transaction [7].

3.3. write Phase
Once a transaction is in the write phase, it is considered

to be committed. All committed transactions can be serialized by
the final timestamp order. In the write phase, the only work of a
transaction is making all its updates permanent in the database.
Data objects are copied from the local workspace into the
database. Since a transaction applies the results of its write
operations only after it commits, the strictness [4] of the histories
produced by OCC-TI is guaranteed. This property makes the
transaction recovery procedure simpler than non-strict
concurrency control protocols.

3.4. correctness

In this section, we give an argument on the correctness of
the algorithm. First, we give simple definitions of history and
serialization graph (SG). The formal definitions for these concepts
can be found in [4]. A history is a partial order of operations that
represents the execution of a set of transactions. Any two
conflicting operations must be comparable. Let H denote a
history. The serialization graph for H, denoted by SG(H), is a
directed graph whose nodes are committed transactions in H and

70

whose edges are all Ti 4 Ti (i #I] such that one of Tis operations
precedes and conflicts with one of vs operations in H. To prove
a history H serializable, we only have to prove that SG(H) is
acyclic [4].

Lemma 1: Let TI and T2 be two committed transactions in a
history H produced by the proposed algorithm. If there is an edge
TI 4 T2 in SG(H), then TS(TI) c TS(T2).

Proof: Since there is an edge, TI -+ T2 in SG(H), the two must
have one or more conflicting operations whose type is one of the
following three:

Case 1: rl[x] + w2[x]

This case implies that TI commits before T2 reaches its validation
phase since rl[x] is not affected by W~[X]. For w~[x], OCC-TI
adjusts TI(T2) to follow RTS(x) that is equal to or is greater than
TS(T,). That is, TS(T1) S RTS(x) c TS(T2). Therefore, TS(T1) c

Case 2: wl[xl + r2[xl

This case is possible only when the write phase of TI finishes
before r2[x] executes in T2’s read phase. For r2[x], OCC-TI
adjusts TI(T2) to follow WS(x), which is equal to or greater than
TS(TI). That is, TS(T1) I WTS(x) c TS(T2). Therefore, TS(T1) c
TSf T2).

Case 3: wl[xl+ w2[xl

This case can be similarly proved to lead to TS(T1) c TS(T2)I

Theorem: Every history generated by OCC-TI algorithm is
serializable.

Proof: Let H denote any history generated by the algorithm.
Suppose, by way of contradiction, that SG(H) contains a cycle
TI+ T2 + ... + T,, + TI, where n > 1. By Lemma 1, we have
TS(T,) c TS(T2) c ... c TS(TJ c TS(TI). This is a contradiction.
Therefore no cycle can exist in SG(H) and thus the algorithm
produces only serializable histories..

WT2).

3.5. Discussion
In this section, we discuss the advantages and

disadvantages of OCC-TI, and consider ways to include
transaction deadline information in making conflict resolution
decisions.

The algorithm keeps all the advantages of OCC-FV.
They include high degree of concurrency, freedom from deadlock,
early detection and resolution of conflicts (compared to backward
validation-based optimistic algorithm) resulting in both less
wasted resources and earlier restarts. All of these contribute to
increasing the chances of meeting transaction deadlines. Also, like
the OCC-FV algorithm, OCC-TI can avoid the “wasted restart”
phenomenon of locking-based algorithms because it allows only
committed transactions to restart others. Furthermore, the ability
of OCC-TI to avoid unnecessary restarts is expected to provide
performance gains over the OCC-FV algorithm.

However, this expected performance gain does not come
for free. The main cost for this benefit is the management of

timestamp intervals for active transactions and timestamps for
data objects. This management can be done efficiently by using a
transaction table and a data object table. The transaction table
contains information of active transactions, including the read set
and write set, and the timestamp interval of every active
transaction. The information that is recorded in the data object
table includes for each data object, D, WTS(D), RTS(D), the list of
transactions holding locks on D, and the waiting list of
incompatible lock requests on D. The data object table is also
called a lock table (see Section 4.5.).

Another important point to note here is that the degree of
performance gain due to avoiding unnecessary restarts is
dependent on the probability that a data object read is updated.
When this write probability is low, that is, a write-read conflict
rarely leads to a write-write conflict, the performance advantage
can be significant. However, if the write probability is high, that
is, a backward ordering for write-read conflict is almost always
followed by a forward ordering for write-write conflict, the cost
for timestamp interval management can overwhelm the benefit of
reduced number of restarts.

Finally, it should be noted that OCC-TI presented in this
paper does not use any transaction deadline information to make
decisions for conflict resolution. The incorporation of timing
information into the algorithm to improve timeliness level is a
problem to be addressed. One method to do this was studied in
[13, 141. In this method, at the validation of a transaction, the set
of active transactions is divided into two groups: reconcilably
conflicting set and irreconcilably conflicting set. Conflict
resolution between the validating transaction and the active
transactions in the irreconcilable set is done by a deadline-
sensitive scheme called Feasible Sacrifice [14]. Then the
timestamp interval adjustment process for reconcilable set follows
only when the validating transaction is decided to commit by the
priority-based conflict resolution.

The Feasible Sacrifice scheme gives precedence to
urgent transactions, while reducing the number of missed
deadlines due to wasted sacrifices through the use of a feasibility
test of every validating transaction. For the feasibility test, we
proposed an approach to estimating the execution time of restarted
transactions in optimistic protocols. In [141, the Feasible Sacrifice
scheme is shown to provide significant gains over deadline-
insensitive optimistic algorithms, and to outperform constantly
the conflict resolution scheme based on a priority wait mechanism
with a wait control technique [8].

4. Experiment Environment
This section outlines the structure and details of our

simulation model and experimental environment which were used
to evaluate the performance of concurrency control algorithms for
RTDBSs. The issues on the implementation of optimistic schemes
are also discussed.

4.1. Tardy Transaction Policy
It has been shown that the policy dealing with tardy

transactions has a significant impact on the relative performance
of the concurrency control algorithms in real-time database

systems [7]. Different policies for tardy transactions are needed
for real-time applications with soji deadlines and firm deadlines.
In the former case, tardy transactions may have to run to
completion (maybe with promoted priority), and in the latter case,
they are considered having lost all value and hence be discarded
from the system. Examples of applications having these types of
deadline are given in [l]. The differences of the performance
behavior of these two policies have been examined using simple
queueing systems in [7]. In the experiments in this paper, we
assume that transactions arriving in the system have firm
deadlines. Therefore, transactions are discarded immediately after
they miss deadline.

4.2. Simulation Model
Central to our simulation model for RTDBS is a single-

site disk resident database system operating on shared-memory
multiprocessors. The physical queueing model is depicted in
Figure 1, and the associated model parameters are described in the
next section. The physical queueing model is similar to the one
used in [3]. CPUs share a single queue and the service discipline
used for the queue is priority scheduling without preemption.
Each disk has its own queue and is also scheduled with priority
scheduling.

In this model, the execution of a transaction consists of
multiple instances of alternating data access request and data
operation steps until all of the data operations in it complete or it
is aborted for some reason. When a transaction makes a data
access request, the request must go through concurrency control
to obtain a permission to access the data object. If the request is
granted, the transaction proceeds to perform the data operation
which consists of a disk access and CPU computation. The
transaction passes through disk queue and CPU queue. If the data
access request is denied, the transaction will be placed into a data
queue. The waiting transaction will be awakened when the
requested data object becomes available.

transac

I I
commit

lock grant
Concurrency :tions

I n I

:tions

disk

Figure 1 Simulation Model

71

If a data access request leads to a decision to abort the
transaction, it has to restart. The system checks the eligibility of a
transaction whenever it restarts, and whenever it is put into and
comes out of a queue, to see if it has already missed its deadline.
With the f m deadline assumption, transactions that has missed
deadline are aborted and permanently discarded from the system.

4.3. Parameter Setting
The database itself is modeled as a collection of data

pages in disks, and the data pages are modeled as being uniformly
distributed across all the disks. A transaction consists of a mixed
sequence of read and write operations. We assume that a write
operation is always preceded by a read for the same page, that is,
the write set of a transaction is always a subset of its read set [4].

Table 1 gives the names and meanings of the parameters
that control system resources. The parameters, CPUTime and
DiskTime capture the CPU and disk processing times per data
page. Our simulation system does not account for the time needed
for lock management and context switching. We assume that these
costs are included in CPUTime on a per data object basis.

The use of database buffer pool is simulated using
probability, rather than each buffer page being traced individually.
When a transaction attempts to read a data page, the system
determines whether the page is in memory or disk using the
probability, BufProb. If the page is determined to be in memory,
the transaction can continue processing without disk access.
Otherwise, an IO service request is created.

Table 2 summarizes the key parameters that characterize
system workload and transactions. Transactions arrive in a
Poisson stream, i.e., their inter-arrival times are exponentially
distributed. The ArriRate parameter specifies the mean rate of
transaction arrivals. The number of data objects accessed by a
transaction is determined by a normal distribution with mean
TranSize, and the actual data objects are determined uniformly
from the database. A page that is read is updated with the
probability, WriteProb.

Ihble 1: Workload Parameters

The assignment of deadlines to transactions is controlled
by the parameters, MinShck and Maxslack, which set a lower and
upper bound, respectively, on a transaction’s slack time. We use
the following formula for deadline-assignment to a transaction:

Deadline = AT + uniform(MinSlack, Maxslack) * ET.

AT and ET denote the arrival time and execution time,
respectively. The execution time of a transaction used in this
formula is not an actual execution time, but a time estimated using
the values of parameters, TranSize, CPUTime and DiskTime. This
value is used only for the above deadline-assignment formula, but
not used for any other purpose including conflict resolution
decisions in concurrency control. In this system, the priorities of
transactions are assigned by the Earliest Deadline First policy
[151, which uses only deadline information to decide transaction
priority, but not any other information about transaction execution
time.

Finally, the base values for parameters shown in Tables
1 and 2 are not meant to model a specific real-time application.
They were chosen to be reasonable for a wide range of actual
database systems.

4.4. Performance Metria
The primary performance metric used is the percentage

of transactions which miss their deadlines, referred to as Miss
Percentage. Miss Percentage is calculated with the following
equation:

Miss Percentage = 100 * (# of tardy jobs I # of jobs arrived).

In addition to Miss Percentage, we measure other
statistical information, including system throughput, average
number of transaction restarts, average data blocking time, and
average resource queueing time. These secondary measures help
explain the behavior of the concurrency control algorithms under
various operating conditions. The average number of transaction
restarts, which we refer to as Restart Count, is normalized on a
per-transaction basis, so that its value represents the average
number of restarts experienced by a transaction until it completes,
or misses its deadline and is discarded.

4.5. Implementation Issues
In this section, we describe a physical implementation

method for optimistic algorithms with forward validation
described at the logical level earlier in this paper. The
implementation is one of the major conditions for a correct
performance comparison of concurrency control algorithms.

Ihble 2 System Resource Parameters
Meaning Base Value

P j P m b b b . of a page in memory buffer I 0.5

For the implementation, we have two major concems.
One is the effiiency of validation. At the logical level, data
conflicts are detected comparing the read set and write set of
transactions. This method is impractical for actual database
systems, since the complexity of the validation test is dependent
on the number of active transactions. The other concem is the
comparability of locking algorithms and optimistic schemes. In
previous studies of concurrency control for RTDBSs in [7,8], the
validation test of optimistic algorithms were implemented using
broadcast mechanism by which the validating transaction notifies

72

other currently running transactions with data conflicts. The
concept is straightforward, but it is difficult to compare the
performance of locking protocol with optimistic algorithm
implemented using broadcast mechanism due to the significant
difference in their implementation. It is difficult to determine the
fair cost for each implementation mechanism. This is especially
true for simulation study, and also applies to performance study
using actual systems such as testbed, because the implementation
costs often vary from one system to another.

Based on these reasons, we decided to use a locking
mechanism for the implementation of optimistic protocols. The
mechanism is based on the one proposed in [ll]. In this
mechanism, the system maintains a system-wide lock table, LT,
for recording data accesses by all concurrently executing
transactions. There are two lock modes - read-phase lock (R-lock)
and validation-phase lock (V-lock). An R-lock is set in LT
whenever a transaction accesses a data object in its read phase,
and an R-lock for write operation is upgraded to a V-lock when
the transaction enters its validation phase. The two lock modes are
not compatible. Generally, the validation process is carried out by
checking the lock compatibility with the lock table. This locking-
based implementation of validation test provides both efficiency
and implementation comparability due to its complexity
independent of the number of active transactions, and its use of
locking, respectively.

It is shown in [l 11 that the physical operations on the
lock table of this implementation of the optimistic protocol are
almost the same as those of locking protocols. Despite the
similarity, there are some differences that may affect the relative
performance of the locking and optimistic protocols. First, the
locking duration of optimistic algorithm is shorter than that of
locking protocols, since it is only during the validation and write
phase of a transaction. Second, the R-locks of optimistic protocol
will not block any concurrent transactions in the read phase.
Finally, the optimistic protocol maintains the property of
deadlock-freedom, even though R-locks and V-locks are used.

5. Experiments and Results
In this section, we present performance results from our

experiments comparing concurrency control algorithms in a real-
time database system. We compare three different concurrency
control protocols: 2PL-HP which is basically a locking scheme,
but resolves a data conflict between a lower priority lock holder
and a higher priority lock requester by restarting the lower priority
transaction [l], OCC-FV [7], and OCC-TI. Note again that OCC-
FV and OCC-TI do not use transaction deadline information for
data conflict resolution, while 2PL-HP does.

The simulation program was written in SIMAN, a
discrete-event simulation language [171. The data collection in the
experiments is based on the method of replication. For each
experiment, we ran the simulation with the same parameter values
for at least 10 different random number seeds. Each run continued
until 1 ,OOO transactions were executed. For each run, the statistics
gathered during the first few seconds were discarded in order to
let the system stabilize after initial transient condition. The
statistical data reported in this paper has 90% confidence intervals

whose end points are within 10% of the point estimate. In the
following graphs, we only plot the mean values of the
performance metrics.

First, we examine the performance of concurrency
control algorithms under the condition of limited resources. The
values of parameters, NumCPUs and NumDisks are fixed two and
four, respectively. Figure 2 shows Miss Percentage behavior of
algorithms under different levels of system workload. System
workload is controlled by the arrival rate of transactions in the
system. In this experiment, the value of WriteProb is fixed at 0.25.
From the graph, it is clear that for very low arrival rates under 10
transactions/second, there is not much difference for the three
protocols. However, as the arrival rate increases, OCC-FV does
progressively better than 2PL-HP, and OCC-TI does even better

One of the reasons for this performance difference is the
difference in the number of restarts, Restart Count, incurred by
each of the protocols, shown in Figure 3. As mentioned earlier,
2PL-HP suffers performance degradation caused by wasted
restarts. That is, the immediate conflict resolution policy of 2PL-
HP allows a transaction that will eventually miss its deadline and
be discarded to restart (or block) other transactions. This
performance degradation increases as the workload level
increases, since the number of transactions that miss their
deadlines and have to be discarded increases.

The delayed conflict resolution policy of optimistic
algorithms helps them to avoid such wasted restarts. However,
OCC-FV suffers performance degradation caused by unnecessary
restarts described in Section 3. At the relatively low write
probability of 0.25, the possibility of a backward ordering
followed by a forward ordering is low, and many unnecessary
restarts can be saved by OCC-TI protocol. This is shown clearly
in Figure 3, where we observe a significant difference between the
restart curves of OCC-FV and OCC-TI.

Figures 4 and 5 show similar graphs as Figures 2 and 3,
i.e., Miss Percentage and Restart Count of the these protocols
under different levels of system workload. In this case, however,
the system operates at a higher level of data contention with the
value of WriteProb fixed at 0.75. The performance difference
between 2PL-HP and OCC-FV becomes even bigger, since the
number of wasted restarts in 2PL-HP tends to increase as data
contention increases. However, OCC-TI does not show
significant performance gains over OCC-FV. This is due to the
fact that with the relatively high write probability of 0.75, not
many restarts are made unnecessarily by OCC-FV, since most
backward ordering is followed by forward ordering.

One point to note here is that the restart count of all the
three protocols decreases after a certain workload. The reason for
this decrease is that after that workload point, resource contention
dominates data contention in discarding deadline-missing
transactions.

Until now, the performance of the protocols was shown
under a limited resource situation. In such situations, since
resource contention dominates data contention quickly as system
workload increases, the performance of the system is primarily
determined by resource scheduling algorithms rather than

than OCC-FV.

73

concurrency control algorithms. In fact, the performance
difference shown in Figures 2 and 4 may not be very striking.

To capture the performance difference of concurrency
control algorithms without the effect of resource contention, we
simulated an infinite resource situation, where there is no
queueing for resources (CPUs and disks). The data contention is
maintained relatively high with the value of WriteProb fixed at
0.5. Figures 6 and 7 show Miss Percentage and Restart Count of
the three protocols. As we expected, the performance difference
of the three becomes clearer. Note that since in this infinite
resource situation, there is no resource contention, the restart
counts of the three protocols ever increase as the system workload
increases.

6. Conclusions
In this paper, we have presented a new optimistic

concurrency control algorithm. The design of the algorithm was
motivated by the recent study results in [7, 81 concluding that
optimistic approach outperforms locking protocols in real-time
database systems with the objective of minimizing the percentage
of transactions missing deadline. We observed that the optimistic
algorithms used in those studies could incur restarts unnecessary
to ensure data consistency. The new optimistic algorithm was
designed to precisely adjust and record temporary serialization
order among concurrently running transactions, and thereby to
avoid unnecessary restarts. To evaluate the effect of the
unnecessary restarts, a quantitative study was carried out using a
simulation system of RTDBS with three concurrency control
algorithms: two-phase locking with high priority conflict
resolution policy (2PL-HP), optimistic protocol with forward
validation (OCC-FV) and the proposed optimistic algorithm
(OCC-TI).

We showed that under the policy that discards tardy
transactions from the system, the optimistic algorithms

among the optimistic algorithms. The performance difference
between OCC-FV and OCC-TI becomes large especially when
the probability of a data object read being updated is low, which
is true in most actual database systems. In conclusion, the factor
of unnecessary restarts is not negligible in performance of
optimistic concurrency control under both finite and infinite
resource conditions, and the proposed optimistic algorithm is a
promising candidate for basic concurrency control mechanisms
for real-time database systems.

The optimistic algorithm proposed in this paper does not
use transaction deadline information in making decisions for data
conflict resolution. We expect a better concurrency control
algorithm by using an intelligent way of incorporating transaction
deadline information into the basic mechanism. In a different
paper [141, we studied deadline-sensitive concurrency control
mechanisms based on OCC-TI for RTDBSs, and proposed a
protocol that outperforms other real-time concurrency control
algorithms currently known under a wide range of operating
conditions.

Outperform 2PL-HP, and OCC-TI does better than OCC-FV

14

REFERENCE

Abbott, R. and H. Garcia-Molina, “Scheduling Real-Time
Transactions: A Performance Evaluation,” Proceedings of
the 14th VLDB Conference, Aug. 1988.
Abbott, R. and H. Garcia-Molina, “Scheduling Real-Time
Transactions with Disk Resident Data,” Proceedings of the
15th VLDB Conference, Aug. 1989.
Agrawal, R., M. J. Carey, and M. Livny, “Concurrency Con-
trol Performance Modeling: Alternatives and Implications,”
ACM Trans. on Database Systems, Dec. 1987.
Bernstein, P. A., V. Hadzilacos, and N. Goodman, Concur-
rency Control and Recovery in Database Systems, Addison-
Wesley, Reading, MA 1987.
Eswaran, K., J. Gray, R. Lone, and I. traiger, ‘The Notions
of Consistency and Predicate Locks in a Database System,”
Comm of ACM, Nov. 1976.
Haerder, T., “Observations on Optimistic Concurrency Con-
trol Schemes,” Information Systems, 9(2), 1984.
Haritsa, J. R., M. J. Carey, and M. Livny, “On Being Opti-
mistic about Real-Time Constraints,” Proceedings of the
I990 ACM SIGACT-SIGART-SIGMOD Symposium on
Principles of Database Systems (PODS), 1990.
Haritsa, J. R., M. J. Carey, and M. Livny, “Dynamic Real-
Time Optimistic Concurrency Control,” Proceedings of the
1 Ith IEEE Real-Time Systems Symposium, Orlando, Flor-
ida, Dec. 1990.
Haritsa, J. R., M. J. Carey, and M. Livny, “Data Access
Scheduling in Firm Real-Time Database Systems,” The
Journal of Real-Time Systems, Kluwer Academic Publish-
ers, 4, 1992.

[lo] Huang, J., J. A. Stankovic, D. Towsley and K. Ramam-
ritham, “Experimental Evaluation of Real-Time Transaction
Processing,” Proceedings of the 10th IEEE Real-Time Sys-
tems Symposium, Dec. 1989.

[l 11 Huang, J., J. A. Stankovic, K. Ramamritham, and D. Tows-
ley, “Experimental Evaluation of Real-Time Optimistic
Concurrency Control Schemes,” Proceedings of the 17th
VLDB Conference, Sep. 1991.

[121 Kung H. T., and J. T. Robinson, “On Optimistic Methods for
Concurrency Control,” ACM Transactions on Database
Systems, June 1981.

[131 Lee, J., and S. H. Son, “An Optimistic Concurrency Control
Protocol for Real-Time Database Systems,” 3rd Interna-
tional Symposium on Database Systems for Advanced
Applications, Daejon, Korea, April 1993.

[14] Lee, J. and S. H. Son, “Design of Optimistic Concurrency
Control for Real-Time Database Systems,” submitted for
publication.

[151 Liu, C. L., and J. Layland, “Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-Time Environment,” J.ACM
10(1), 1973.

[16] Lin Y., and S. H. Son, “Concurrency Control in Real-Time
Database Systems by Dynamic Adjustment of Serialization
Order,’’ Proceedings of the 11th IEEE Real-Time Systems
Symposium, Orlando, Florida, Dec. 1990.

[17] Pegden, C. D.. R. Shannon, and R. Sadowski, Introduction
to Simulation Using SIMAiV, McGraw-Hill, Inc., NJ. 1990.

Figure 2 Miss Percentage, Write Probability = 0.25
Finite Resource. Tardy Transactions Discarded

100,

r"II.YI #nuLC \L'"IIDYC,I"I,J,JCC,

Figure 4 Miss Percentage, Write Probability = 0.75

Figure 6 Miss Percentage, Write Probability = 0.5
Infinite Resource, lardy Transactions Discarded

100

occ-fv

0 10 20 40
Arrival Rate (transoction2jsec)

0 10 20 30 40
Arrival Rate (transactions/sec)

Figure 3 Restart Count, Write Probability = 0.25
finite Resource. Tardy Transactions Discarded

* occ-Fv

Figure 5 Restart Count, Write Probability = 0.75
Finite Resource, Tardy Transactions Discarded

0 IO 20 30 40
Arrival Rate (transactions/sec)

Figure 1 Restart Count, Write Prabability = 0.5
Infinite Resource, Tordv Transactions Discarded

0 10 20 30 40 50
Arrival Rate (transactions/sec)

75

